Pearson Edexcel

Mark Scheme (Results)

Summer 2018

Pearson Edexcel International Advanced Level in Biology (WBI01) Lifestyle, Transport, Genes and Health

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2018
Publications Code WBI01_01_1806_MS
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question Number	Answer	Mark
$\mathbf{1 (a) (\mathbf { i })}$	The only correct answer is C	
	A is not correct because amino acids are not joined in chains by ester bonds	
	B is not correct because amino acids are not joined in chains by hydrogen bonds	

Question Number	Answer	Mark
$\mathbf{1 (a) (i i)}$	The only correct answer is D	
	A is not correct because lipids are broken down by hydrolysis reaction that uses a water molecule B is not correct because lipids are broken down by hydrolysis reaction that uses a water molecule C is not correct because lipids are broken down by hydrolysis reaction that uses a water molecule	

Question Number	Answer	Mark
$\mathbf{1 (a) (i i i)}$	The only correct answer is D	
	A is not correct because amylose is not branched and only has 1,4 glycosidic bonds B is not correct because amylose is not branched \mathbf{C} is not correct because amylose only has 1,4 glycosidic bonds	

Question Number	Answer	Mark
$\mathbf{1 (b) (\mathbf { i })}$	The only correct answer is C	
	A is not correct because $4354 \div(1741+2612+4354)=0.5$ and not 0.2	
	B is not correct because $4354 \div(1741+2612+4354)=0.5$ and not 0.2	(1)

Question Number	Answer	Additional Guidance	Mark		
$\mathbf{1 (b) (i i)}$	idea that individual M is more active than individual L;	ACCEPT converse e.g. more exercise / less sedentary / M is an athlete but L is not $/ \mathrm{M}$ trains more / M has a more physical job Need to compare M and \mathbf{L}			
IGNORE references to diet / lifestyle				\quad	(1)
:---					

Question Number	Answer	Additional Guidance	Mark
$\mathbf{1 (b) (\text { iii) }}$	1. person N has a high \{lipid diet / cholesterol levels / LDLs\} ;	1 I GNORE blood pressure / obesity	
2. statins reduce \{cholesterol levels / LDL levels / risk of CVD / eq\} ;	2 ACCEPT decreases production of cholesterol by liver / blocks HMG Co A reductase DO NOT ACCEPT blood pressure / obesity	(2)	

Question Number	Answer	Mark
2(a)	The only correct answer is C	
	A is not correct because the sugar shown is a hexose	
	B is not correct because the sugar shown is a hexose	

Question Number	Answer	Additional Guidance	Mark		
2(b)	1. idea of sequence of \{bases / nucleotides / codons (on DNA) ;	2 ACCEPT protein			
2. coding for a \{sequence of amino acids /					
polypeptide\} ;				\quad	(2)
:---					

Question Number	Answer	Additional Guidance	Mark
2(c)	1. DNA (molecule) unwinds /unzips/ strands separate /eq ; 2. idea that (DNA mono) nucleotides line up alongside (both) \{DNA / template\} strands; 3. by complementary base pairing ; 4. reference to hydrogen bonds \{breaking / forming / eq\} (between DNA bases) ; 5. formation of phosphodiester bonds (between adjacent DNA mononucleotides) ; 6. credit a correctly named (DNA) enzyme ;	If ref to transcription 2max-mps1 and 3 2 ACCEPT pair up along both strands 3 IGNORE-base pairing rule/ complementary bases only 3 ACCEPT adenine binds to thymine / A binds to T / guanine binds to cytosine / C binds to G 6 e.g. (DNA) polymerase / helicase / ligase - in correct context	(4)

Question Number	Answer	Additional Guidance	Mark
2(d)	1. mRNA is a copy of the \{genetic / DNA\} \{code / information\} ;		
	2. idea that mRNA carries (genetic) information to the ribosomes ; 3. tRNA carries a \{specific / eq\} amino acid ; 4. idea that tRNA/rRNA holds amino acids in place for peptide bond to form ;	4 ACCEPT mRNA acts as a template for translation / eq	
binds to codon on mRNA			

Question Number	Answer	Mark
$\mathbf{3 (a) (\mathbf { i })}$	The only correct answer is D	
	A is not correct because S labels the vena cava	
	B is not correct because S labels the vena cava	
C is not correct because S labels the vena cava	(1)	

Question Number	Answer	Mark
$\mathbf{3 (a) (i i)}$	The only correct answer is A	
	B is not correct because T labels an atrioventricular valve C is not correct because T labels the left atrioventricular valve D is not correct because T labels a the left atrioventricular valve	

Question Number	Answer	Additional Guidance	Mark
$\mathbf{3 (b) (\mathbf { i })}$	1. (time for one heart beat $=) 0.74 / 0.75 / 0.76 ;$	2 ACCEPT whole numbers only ecf if value for $m p 1$ is in the range of 0.7 to 0.8 Correct answer with no working gains $\mathbf{2 ~ m a r k s ~}$	(2) (heart rate $=) 81 / 80 / 79 ;$

Question Number	Answer	Additional Guidance						Mark
3(b)(ii)	1. (volume of blood per beat $=$) $60 / 61 / 6$	Allow ECF for heart rate from (i)						
			60	61	62	63	64	
	2. (volume in a minute = volume of blood	79	4740	4819	4898	4977	5056	
	per beat $\times 79 / 80 / 81=) 4880 / 4960 /$	80	4800	4880	4960	5040	5120	
	5040 ;	81	4860	4941	5022	5103	5184	
		Correct answer with no working gains 2 marks						(2)

Question Number	Answer	Mark
$\mathbf{3 (b) (i i i)}$	The only correct answer is C	
	A is not correct because both sides of the heart pump the same volume of blood each minute B is not correct because both sides of the heart pump the same volume of blood each minute D is not correct because blood is pumped from the right ventricle at a lower pressure	

Question Number	Answer	Additional Guidance	Mark
3(c)	1. \{atrial systole / atria contract / eq\} moving blood into the ventricles / eq ;	NB ACCEPT in correct context of RHS, LHS or both throughout 2.\{ventricular systole / ventricles contract / eq\} moving blood into the \{arteries / pulmonary artery / aorta\} / eq ; 3.\{diastole / atria and ventricles relax \} and both(atria and ventricles) fill with blood / eq ;	

Question Number	Answer	Additional Guidance	Mark
3(d)	1. oxygenated and deoxygenated blood \{are separate / do not mix / eq\} ; 2. (this) maintains a \{steep / eq\} concentration gradient in the \{lungs / alveoli / tissues / eq\} ; 3. idea that more oxygen can be carried to the \{tissues / cells / eq\} ; 4. need for one pressure difference explained;	2 ACCEPT maintains a \{steep / eq\} concentration gradient for gas exchange 3 ACCEPT carried to all parts of body 4 e.g. (lower to) \{lungs / pulmonary circulation $\}$ to prevent damage OR (higher to) \{body / systemic circulation\} to provide blood to all tissues	(3)

Question Number	Answer	Additional Guidance	Mark
4(a)	1. unsaturated lipids have carbon - carbon \{double / triple\} bonds AND saturated lipids chains do not / eq ; 2. unsaturated lipids have \{bent/kinked\} chains AND saturated lipids have \{straight/linear\} chains / eq ; 3. idea that unsaturated lipids have a \{lower hydrogen to carbon / higher carbon to hydrogen\} ratio / eq ;	NB Answers can be pieced together 1 ACCEPT C=C ACCEPT saturated only have C-C single bonds 2 ACCEPT unsaturated lipids are shorter than saturated ones (with same number of carbons) ACCEPT saturated lipids are straight and unsaturated are not/converse DO NOT ACCEPT branched 3 ACCEPT converse for saturated lipids C atoms joined to max no of H atoms for saturated lipids unsaturated lipids have fewer hydrogens than saturated ones with same number of carbons	(2)

Question Number	Answer	Additional Guidance	Mark
4(b)(i)	1. unsaturated lipids have a lower (mean blood) cholesterol level / saturated have a higher (mean blood) cholesterol level ;		
	2. little / eq effect on the number of deaths;	2 ACCEPT difference	(2) small / only 2\%/eq\}

Question Number	Answer	Additional Guidance	Mark
4(b)(ii)	1. short study time / only 4.5 years ; 2. small group of people studied / small sample size / eq ;	DO NOT ACCEPT-ref to improvements e.g. use more people/conduct a longer study.	
	3. idea that cause of deaths are not recorded ; 4. idea that there is no information about other named variables ; 5. idea of no control group ;	4 e.g. gender / age / genetics/ lifestyle/smoking	
DO NOT ACCEPT- diet only	(2)		

Question Number	Answer	Additional Guidance	Mark
$\mathbf{5 (a) (i)}$	endothelial ;	ACCEPT endothelium / epithelial / epithelium / endothelia / epithelia inflammatory ; cholesterol ; atheroma/plaque ;	IGCEPT inflammation
IGORE LDL / HDL			

Question Number	Answer	Additional Guidance	Mark
5(a)(ii)	1. idea that \{atheroma / plaque / thrombus / eq\} \{reduces diameter / blocks / eq\} coronary artery ; 2. reduced blood flow to heart \{muscle /cells / tissue\} ; 3. heart (muscle) receives less \{oxygen / nutrients / glucose / eq\} ; 4. heart (muscle) \{dies / fatigues / eq\} ;	1 ACCEPT description of coronary artery e.g. artery that supplies the heart muscle 3 ACCEPT ischaemia 4 ACCEPT named CHD e.g. heart attack / myocardial infarction/angina DO NOT ACCEPT-stroke/aneurism	(3)

Question Number	Answer	Additional Guidance	Mark
5(b)(ii)	1. people with a high BMI \{do not feel unwell / have no symptoms /eq \};	1 ACCEPT CVD takes a long time to develop	
	2. lack of \{awareness / education / eq\} (that BMI is linked to CVD) ;	2 ACCEPT people do not believe they are obese / no family history	
3. idea that BMI is not a reliable indicator of obesity in people with a high muscle mass;	3 ACCEPT examples of people with high muscle mass e.g. athlete		

Question Number	Answer	Additional Guidance	Mark
$\mathbf{6 (a)}$	change in the sequence of \{bases / nucleotides / codons\} (in DNA) ;	ACCEPT \{base / nucleotide/codon\} \{deletion / insertion / substitution\}	

Question Number	Answer	Additional Guidance	Mark
*6(b)	1. cystic fibrosis is \{caused / eq by a recessive allele\}/is a recessive disorder ; 2. so \{child / someone with cystic fibrosis / eq\} has to be homozygous recessive / eq ; 3. parents are \{heterozygous / carriers / eq\} ; 4. cystic fibrosis allele has to be inherited \{from both parents / in both gametes\} / eq ; 5. credit details of effect of cystic fibrosis ; 6. mutation may have occurred \{in formation of gametes / post-fertilisation \} ;	QWC emphasis is logical account [penalise once only] Do not accept gene for allele 2 ACCEPT diagram that labels genotype of the child with cystic fibrosis 3 ACCEPT diagram that labels genotypes of the parents 3 ACCEPT parents have one recessive and one dominant allele/one affected and one unaffected allele 5 ACCEPT non-functional CFTR protein/sticky mucus/eq	

Question Number	Answer	Additional Guidance	Mark		
6(c)(i)	1. (overall) P aeruginosa increases and S aureus decreases;	1 Piece two parts together			
2. P aeruginosa increases to age 25					
and decreases after age 35;					
3. S aureus increases to age 15 and					
then decreases ;					4. credit correct manipulation of
:---					
figures;	\quad	(3)			
:---					

Question Number	Answer	Additional Guidance	Mark
$\mathbf{6 (c) (\text { ii) }}$	1. mucus cannot be removed (by cilia from the airways) / eq ;	1 ACCEPT build up of mucus / mucus blocks airways 2. idea that mucus traps \{bacteria / pathogens\} ; 3. idea that mucus provides conditions for bacteria to \{live / grow / reproduce / eq \};	3 ACCEPT breed
4. lungs damaged by coughing are more prone to bacterial infection / eq ;	5. idea that phagocytes cannot destroy bacteria ;	(3)	

Question Number	Answer	Additional Guidance	Mark
$\mathbf{7 (a)}$	1. biological catalyst ;	ACCEPT \{protein / chemical\} catalyst \{protein / molecule / chemical\} that \{lowers the activation energy / speeds up reactions $\}$ IGNORE-substance	

Question Number	Answer	Additional Guidance	Mark
$\mathbf{7 (b) (\mathbf { i) }}$	1.(as the reaction proceeds) the \{substrate / hydrogen peroxide\} is used up / decreases in concentration ; 2. (therefore) \{substrate / hydrogen peroxide\} limits the rate of reaction / \{substrate / hydrogen peroxide\} becomes the limiting factor ;		

Question Number	Answer
7(b)(ii)	1. as \{substrate / hydrogen peroxide\} concentration increases \{activity of catalase / rate of reaction / oxygen production\} increases / eq ;
	2. because more \{substrate / hydrogen peroxide\} to collide with \{active site / enzymes\} ;
3. idea that \{catalase activity / rate of	
reaction / oxygen production\} \{levels	
off / plateaus / eq\} as \{substrate /	
hydrogen peroxide\} increases ;	

Additional Guidance \quad Mark
1 ACCEPT positive correlation
1 DO NOT ACCEPT-linear/proportional

2 ACCEPT more enzyme substrate complexes formed

3 DO NOT ACCEPT-rate decreases/slows down/becomes constant

4 ACCEPT enzyme concentration becomes the limiting factor

Question Number	Answer	Additional Guidance	Mark
*7(c)	QWC emphasis is clarity of expression 1. idea of using different concentration of \{substrate / hydrogen peroxide\} ; 2. description of how to measure oxygen ; 3. idea of collecting oxygen over a period of time ; 4. \{measure / calculate / eq\} initial rate of reaction ; 5. repeat (each concentration of substrate) and calculate a \{mean / average\} ; 6. two controlled variables identified ; 7. description of how to control one named variable :	QWC emphasis is clarity of expression NB candidates who describe a wrong experiment could possibly be awarded mp 5, 6 and 7 DO NOT ACCEPT less than 5 stated concentrations 2 e.g. gas syringe, measuring cylinder, counting bubbles 7 e.g. temperature using a water bath / pH using a buffer	(5)

Question Number	Answer	Additional Guidance	Mark
$\mathbf{8 (a)}$	thromboplastin;	ACCEPT thrombokinase, factor III List rule eg serotonin and thromboplastin $=0$	(1)

Question Number	Answer	Additional Guidance	Mark
$\mathbf{8 (b)}$	1. EDTA \{stops/reduces/eq\} clotting of (stored) blood ;		

Question Number	Answer	Additional Guidance	Mark
$\mathbf{8 (c) (i)}$	1. primary structure is the \{order / sequence / eq\}of amino acids; 2. idea that this determines the folding of the protein ; 3. idea that (the types of) amino acids determine \{type of bonds / named bond\} (between R-groups) ;	2 ACCEPT secondary structure / tertiary structure	
4. idea that (the position of) amino acids determines position of bonds (between R-groups) ;	5. fibrinogen is a globular protein ; 6. idea that fibrinogen is \{polar / hydrophilic\} on the outside ;	(4)	

Question Number	Answer	Additional Guidance	Mark
8(c)(ii)	1. protease \{breaks /hydrolyses/cuts\} (peptide) bonds in fibrinogen to produce fibrin ;	2. fibrin is hydrophobic / eq ;	3 ACCEPT a fibrous mesh / a polymer of fibrin / cross links between fibrin 3 IGNORE-forms (long) fibres/strands

